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Abstract—Combining efficiency with safety is one of the most
important design challenges for connected automated trucks.
In order to address this challenge for longitudinal control
problems, we propose a scheme that integrates a performance-
based controller with a safety-oriented controller in a seamless
manner. This safe integration scheme operates instantaneously,
and it is compatible with a large class of controllers. We first link
this practical integration method to the theoretical framework of
control barrier functions that endows controllers with formal
safety guarantees. Then, through this scheme we safely inte-
grate a predictive-type controller minimizing energy consumption
(predictive cruise control—PCC) with a safety-oriented cruise
controller structure relying on connectivity (connected cruise
control—CCC). Importantly, the efficacy of the safe and seamless
integration between the PCC and the CCC is demonstrated using
on-road experiments with a full-scale connected automated truck.
Initial experimental campaign is held on a closed test track, and
safe driving is achieved thanks to the CCC while up to 18%
energy saving is obtained thanks to the PCC. Finally, experiments
are extended to a public highway, and similar results are obtained
with up to 4.3% energy saving.

Index Terms—Connected automated trucks, energy efficiency,
safety, control barrier functions

I. INTRODUCTION

The rapid progress in automated vehicle (AV) technology
is projected to lead to considerable amount of AVs on public
roads in the foreseeable future, even with conservative esti-
mates [1]. AVs are expected to bring prospects to individuals
and society, including improved mobility, comfort, energy and
time efficiency, and a reduction in carbon emission [2], [3].
While each of these prospects pose essential objectives to be
optimized in AV design, safety is yet to remain as the most
critical requirement. Indeed, studies show that 93% of the total
traffic accidents per year in the US are caused by human-
related errors [4], which is a factor that can potentially be
reduced or diminished with reliable AV technologies [5].
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Safety in commercially available AVs is typically main-
tained with features such as automatic emergency braking
[6] and lane keeping [7], where the longitudinal and lateral
motion of the vehicle is controlled, respectively, based on
the information from perception systems. A wide selection of
onboard range sensors can be utilized for detection purposes,
such as radar, lidar, and camera [8]. Additionally, recent ad-
vancements in communication technology have paved the way
for wireless connectivity that provides reliable information
exchange between different road users and the infrastructure.
This, when integrated with AV technology, leads to connected
automated vehicle (CAV) technology. Connectivity bears a
substantial potential to amplify the above-mentioned prospects
of AVs [9], [10], and some of these improvements have been
reported in earlier experimental studies [11]–[13].

It is crucial to employ the right controller strategies to take
full advantage of the benefits offered by the CAV technology.
The control problem for a CAV usually consists of two main
goals: optimizing the outcome of a desired prospect (such
as minimizing energy consumption), and keeping the system
safe (collision avoidance). The controller design for a CAV
is often constructed in the context of optimization, for exam-
ple, by finding the optimal parameters of a given controller
obtained via classical control techniques [7] and data-driven
methods [14], or by finding optimal trajectories for a finite
horizon as in model predictive control (MPC) [15]–[18]. MPC
can potentially handle additional constraints to address the
safety problem as well. However, its computational burden for
solving complex nonlinear optimization problems in a rolling
horizon fashion makes it challenging to be implemented in an
on-board unit with limited computation capacity.

An alternative approach to satisfy both control tasks (per-
formance and safety) is to focus on each problem separately
and then integrate the resulting controller strategies in the
implementation. Integration methods typically operate in the
scheme of correcting (or interfering with) a performance-based
controller according to a specific safety task. For example, the
study [19] offers an adaptive cruise controller for longitudinal
control with a switching structure: a nominal controller is
switched to a braking trajectory when a prescribed minimum
safe distance from the preceding vehicle is no longer satisfied.
In [20], a command/reference governer method is utilized
to adjust an existing higher-level controller to satisfy safety
constraints over a horizon. Another scheme is proposed in
[21], where formal methods guarantee safety specifications
with a correct-by-construction controller, which can be used as
a supervisor to interfere with an existing controller. Although
shown effective, these integration strategies operate according



Fig. 1. Connected automated truck (CAT) driving on a highway in three scenarios. (a) There is no preceding vehicle. (b) The closest preceding
vehicle is a connected vehicle (CV) detected by the range sensor and connectivity simultaneously. (c) There are non-connected vehicles
(nCVs) between the CAT and the CV, and range sensor and connectivity detect different vehicles.

to a certain safety condition that is calculated specifically
based on the defined safety task. Therefore, these methods
inherently lack the flexibility to employ any existing safety-
oriented controller that can be preferable because it has been
developed based on safety assessment methods [22] or because
it has been exhaustively tested under real road conditions,
often by external parties.

A method that can potentially eliminate this practical lim-
itation is proposed in [23] for platoon control. This scheme
selects the minimum of two desired accelerations that are
designed separately to maintain an intended speed (speed
control mode) and to keep a safe distance from the preceding
vehicle (gap control mode). While it is intuitive, the authors
do not provide a discussion on the safety implications of
this approach. More importantly, the efficacy of the method
has not been evaluated on an experimental platform. Instead,
numerical simulations are used to validate the safety of the
platoon.

In our work, we utilize the integration scheme of selecting
the minimum desired acceleration, and we establish the con-
nection between this scheme and the theoretical framework
of control barrier functions [24]. Through this framework we
provide formal safety guarantees for the controller integration
scheme. Moreover, we propose a more general version of this
type of controller integration: a safe integration method with
a safety filter for longitudinal control of CAVs. Our method
is more general in the sense that it is compatible with any
types of safety-oriented controllers, e.g., those running on
commercially available AVs, without requiring modifications
to these controllers. We demonstrate the efficacy of our
proposed safe integration scheme on a connected automated
truck (CAT). The CAT is equipped with a cruise controller
that uses connectivity to maintain a safe car following be-
havior (connected cruise controller—CCC) and a predictive-
type performance-based controller that minimizes the energy
input over a specified horizon by leveraging the gravitational
potential energy (predictive cruise controller—PCC).

The proposed controller integration scheme is validated
through hardware experiments with a full-scale CAT in differ-
ent experimental scenarios. Proof-of-concept experiments are
conducted in a fully-controlled environment on a closed test
track. Through these experiments we show that safe driving is
maintained thanks to the CCC, while energy savings up to 18%
are obtained with the PCC. Next, we conduct experiments in
a partially-controlled environment on a public highway. The

measurements obtained from these highway experiments agree
with the previous results: safe and seamless integration can be
achieved through the proposed simple yet effective method—
even in real traffic. Furthermore, we compare the results to
a baseline algorithm that switches between the PCC and the
CCC based on the time headway. It is shown that comparable
energy-saving percentages and smooth driving may not be
obtained if one does not design the integration carefully.

The organization of the paper is as follows. In Section II,
we give a detailed description of the driving scenarios with
a CAT, and we present models representing the system. In
Section III, we first introduce the general safe integration
scheme for the longitudinal control problem of CAVs. Then,
we describe the design steps of an energy optimal nominal
controller (PCC) and a safety-oriented controller (CCC) for
CATs. Section IV presents our on-track experimental results
validating the proposed controller structures separately as well
as their integration through the proposed scheme. In this
section we also compare our findings with a naive switch-
ing algorithm. We present experimental results on a public
highway in Section V and conclude the paper in Section VI.

II. SYSTEM DESCRIPTION AND MODELING

Here we describe the driving scenario and the truck’s
sensor and control systems. Then we give dynamical models
representing the system.

A. System Description

This study considers a scenario where a CAT drives on a
highway with changing elevation. The CAT either drives with
no influence from the preceding traffic, as shown in Fig. 1(a),
or it follows a preceding vehicle, as in Fig. 1(b)-(c). Onboard
the CAT, there is a range sensor for detecting preceding ve-
hicles and a communication module that enables connectivity
with other connected vehicles (CVs). We consider scenarios
with one CV ahead, but the proposed controller scheme can
be extended to multiple CVs. The vehicle immediately in front
of the CAT may be the CV, as shown in Fig. 1(b), or there
may be other non-connected vehicles (nCVs) in between the
CAT and CV, as in Fig. 1(c).

Our goal is to control the longitudinal motion of the CAT
based on the information from the range sensor and commu-
nication module. We want to maintain safety as the primary
concern while attaining the desired driving performance when
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Fig. 2. Block diagram representing the control architecture implemented on the connected automated truck.

possible. In this study, we consider the energy efficiency as the
performance criterion. To achieve our goal, we implement the
control system illustrated in the block diagram in Fig. 2. We
retrofit the CAT with drive-by-wire actuators, which control
the powertrain and brake subsystems based on the driver’s
pedal inputs [25]. We intervene the drive-by-wire system by
replacing the driver’s inputs with the desired pedal positions
calculated by a proposed longitudinal controller.

The longitudinal controller we implement consists of a two-
layer architecture with high and low levels. The high-level
controller calculates the desired longitudinal acceleration,
denoted by u, based on a high-level controller goal. The high-
level controller block in Fig. 2 highlights some examples of
these controllers and a safe integration scheme called a safety
filter, which will be detailed in Section III.

The low-level controller finds the corresponding desired
pedal commands to track the desired acceleration commands
as closely as possible. Specifically, the low-level controller
uses experimental data containing the acceleration response
to pedal commands. These data were generated at various
speed levels, gears, and pedal commands in an open-loop
fashion. The resulting relationships are inversely encoded in
the low-level controller as feedforward maps, which give the
corresponding pedal commands to achieve the commanded
acceleration based on speed and gear. For example, Fig. 3
depicts the feedforward maps utilized in gear 7. Note that the
experimental data used in the feedforward map calculations do
not capture the effect of the road slope. Thus, we compensate
for the gravitational effect before applying the feedforward
maps using road slope information obtained from elevation
data. These data were collected via GPS along the particular
road sections utilized prior to performing the experiments.

The control system relies on sensory information from the
communication module and from the range sensor to calculate
the high-level acceleration command. The communication
module can measure GPS coordinates, and the ground speed
v of the CAT. It also receives information from the CV,
including its ground speed vc

1 and GPS coordinates. These
coordinates are used to calculate the longitudinal bumper-to-
bumper headway hc between two vehicles [12]. The range
sensor is mounted on the front bumper and measures the
headway hr between the closest preceding vehicle and the
CAT. It also measures the relative speed between vehicles,

which is added to v to get the ground speed vr
1 of the preceding

vehicle. For simplicity, we will drop the superscripts ‘c’ and
‘r’ when there is no ambiguity and use them only to emphasize
the difference between the source of the data (connectivity or
range sensor) when needed.

B. Modeling

Here, we introduce the system models utilized for control
design. First principles are used to derive the longitudinal ve-
hicle dynamics for a rear-axle-driven truck without headwind
[27]:

ṡ = v,

v̇ =
Tw

Rmeff
− mg

meff

(
sin(φ(s)) + γ cos(φ(s))

)
︸ ︷︷ ︸

f1(φ(s))

− kair

meff
v2︸ ︷︷ ︸

f2(v)

,

(1)

where s is the distance traveled by the front bumper of the
CAT along the road, v and v̇ are the longitudinal speed and
acceleration, and φ(s) is the road slope changing along the
road; see Fig. 1(a). Parameters in the model are the tire radius
R, truck mass m, effective mass meff = m+ I/R2 (incor-
porating the mass moment of inertia I of rotating elements),
rolling resistance γ, air drag coefficient kair, and gravitational
acceleration g. For this study we use parameters corresponding
to a truck without a trailer, given in Table I.

Fig. 3. Feedforward maps utilized by the low-level controller output-
ing the pedal positions to track the desired acceleration commands.
The right panel shows the map for gear 7.
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Here Tw denotes the net wheel torque applied at the
rear axle, consisting of a positive driving and a negative
braking component. To work with these components using
units of acceleration for convenience, we utilize the conversion
Tw = ûRmeff and reformulate (1) as

ṡ = v, v̇ = û− f1(φ(s))− f2(v). (2)

We remark that the scaled torque input û can be split as

û = udr + ubr, (3)

where udr ≥ 0 and ubr ≤ 0 represent the scaled driving and
braking torques, respectively. This will be utilized when
constructing the performance-based controller further below.
Assuming that the low-level controller ideally compensates
the functions f1 and f2, the model (2) reduces to

ṡ = v, v̇ = u, (4)

where u represents the desired acceleration prescribed by the
high-level controller.

We describe the motion of preceding vehicles using the
kinematic model:

ṡ1 = v1, v̇1 = a1, (5)

where s1 is the distance traveled by the rear bumper of the
preceding vehicle in consideration (see Fig. 1(b)-(c)), while
v1 and a1 denote the corresponding speed and acceleration.
To utilize the distance headway in the high-level controller
we first define the variable h , s1 − s, and use (4) and (5) to
obtain the car-following model:

ḣ = v1 − v, v̇ = u, v̇1 = a1. (6)

Whether the preceding vehicle in consideration is a CV or a
nCV, we may add the superscripts ‘c’ and ‘r’ for h and v1 to
highlight the feedback’s source; see Fig. 1(b)-(c).

In order to take into account the physical limitations in the
powertrain and brake we limit the desired acceleration:

−u ≤ u ≤ min

{
u,

P

meff v

}
. (7)

Here u is the maximum deceleration limit corresponding to
the maximum brake torque. The term u denotes the maximum
acceleration corresponding to the maximum torque applied on
the driven wheels. The desired acceleration is also limited by
the maximum power P of the powertrain. We list the values
of u, u, and P in Table I. Finally, we also consider

v ≤ v ≤ v, (8)

where the speed limits v and v are determined based on the
road curvature, surface conditions, and legal limitations.

R 0.5 m m 9000 kg meff 9157 kg
γ 0.006 kair 3.84 kg/m g 9.81 m/s2

u 4 m/s2 u 2 m/s2 P 93 kW

TABLE I. CAT parameters used in this study corresponding to a
2011 International ProStar+ Class-8 truck manufactured by Navistar
Corporation [26].

III. CONTROLLER DESIGN

In this section we formally define safety for a connected
automated vehicle in the single-lane scenario. We introduce
the notion of a safety filter based on the safety-critical control
task. Then, we show the design steps for a safety-oriented
connected cruise controller and an optimal-in-energy nominal
controller for a connected automated truck.

A. Safe Controller Integration Scheme

The safety task for a CAV within a single lane (i.e., no
overtaking considered) is to follow the preceding vehicle while
maintaining at least a certain critical distance at all times. This
can be formulated as

h(t) ≥ ρ (v(t), v1(t)) , ∀t ≥ 0, (9)

where the function ρ gives the critical distance based on the
speeds of the CAV and the preceding vehicle.

There are many possible approaches to specify the critical
distance ρ, such as the minimum time-to-collision [28] or
minimum time headway [29]. Furthermore, one may take the
input capabilities of the CAV, given by (7), into consideration
to provide feasibility to the resulting safety-critical controller
as described in [30], which is then extended to a smooth
quadratic function in [31]. The scheme proposed in this
study can be applied to a large class of safety tasks under
Assumption 1.

Assumption 1. The critical distance the CAV shall keep from
the preceding vehicle strictly increases with the speed of the
ego vehicle; that is, for a continuously differentiable ρ we have

∂

∂v
ρ(v, v1) > 0, (10)

for all v ∈ [v, v] and v1 ≥ 0.

The reasoning behind this assumption is that the faster the
vehicle travels, the larger distance it shall keep.

Safety tasks in the form of (9) are often studied in the
context of set invariance in the literature [32], where the state
of a dynamical system should remain inside a prescribed set
for all time. To be specific, consider a set given as

C , {[h, v, v1]> ∈ R3 | h− ρ(v, v1) ≥ 0}, (11)

for the car-following setup (6). For an initial condition
[h(0), v(0), v1(0)]> ∈ C, if [h(t), v(t), v1(t)]> ∈ C for all
t ≥ 0, then we say the system is safe with respect to the set
C, which ensures safety defined as (9).

Control barrier functions (CBFs) offer a solution to syn-
thesize controllers for problems of this type [24]. A detailed
description is given in Appendix A. In simple terms, a CBF
renders a system safe by providing a condition for the con-
troller to satisfy (cf. (32)). When this condition is used as a
constraint to modify a nominal control input to the closest safe
input (cf. (33)), the resulting controller is called safety filter.
Safety filters operate instantaneously (without any horizon)
and offer easy-to-implement solutions, especially for single
input systems such as the longitudinal control of a CAV.
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We use the model (6) for a general CAV, which, along with
Assumption 1, yields the CBF-based safety filter

u = min {unom, usafe} , (12)

see Appendix A for calculation details. This algorithm will be
used as the proposed safe controller integration scheme. Here
unom is a nominal controller that can be tailored to optimize
an aspect of the system without considering safety, such as
optimal-in-energy driving. The term usafe denotes a safety-
critical controller, which can be any algorithm certified to
keep the system safe by satisfying the controller constraint
provided by the CBF. When the nominal controller gives
smaller input than the safety-critical controller, it can be
shown to satisfy the safety task (9). Therefore, the safety filter
passes the nominal controller without modification to maintain
performance. However, the safety filter switches to the safety-
critical controller when its input becomes smaller than the
nominal one to ensure that safety is not violated.

In the remainder of this section, we present details about
implementing the safe controller integration scheme (12) to
the longitudinal control problem of a connected automated
truck with a safety-critical controller and an energy-efficient
nominal controller. We note that CBFs can also provide us
with a form of usafe (cf. (35)) for a specific selection of
ρ used in the safety task (9). However, since we do not
specify ρ, we choose to replace the CBF-based safety-critical
controller with another safety-oriented controller shown to be
safe experimentally under various working conditions.

B. Safety-oriented Connected Cruise Controller
A connected cruise controller structure is utilized as the

safety-oriented controller for the safety filter (12). This type
of controller was studied extensively for stability and string
stability under time delays and system uncertainties [33]–[35],
and it was shown to be safe experimentally for different driver
behaviors [12].

The controller structure is given as

usafe(h, v, v1) = A(h)(V (h)− v) +B(h)(W (v1)− v), (13)

where the first term gives the desired acceleration based on
the speed error associated with the range policy

V (h) =


0 if h ≤ hst,

κ (h− hst) if hst < h < hgo,

v if h ≥ hgo,

(14)

see Fig. 4(a). Parameter hst denotes the stopping distance,
and κ is the gradient determining the relationship between
the distance headway and the target speed. The value
hgo , hst + v/κ is the distance, after which the range policy
outputs the maximum speed v as the target speed. The second
term in (13) yields the desired acceleration based on the
relative speed subject to the speed policy

W (v1) = min {v1, v} , (15)

which is introduced to put a bound on the speed error in case
the preceding vehicle moves faster than the speed limit, see
Fig. 4(b).

Fig. 4. Range policy (14), speed policy (15), controller gain functions
(16) and (17) with parameters used in Section V.

Terms A and B determine the gains associated with the
speed errors based on the range policy and the relative speed.
We choose

A(h) =

{
α if h ≤ hCC,

αCC if h > hCC,
(16)

B(h) =


β if h ≤ hgo,

β
hCC − h
hCC − hgo

if hgo < h < hCC,

0 if h ≥ hCC,

(17)

as depicted in Fig. 4(c)-(d). Notice that the effect of the preced-
ing vehicle’s speed gradually diminishes for larger headways.
For h ≥ hCC we have A(h) = αCC and B(h) = 0, that is,
(13) yields the constant speed cruise controller αCC(v − v)
tracking the maximum speed v with a constant gain αCC. We
will specify the distance δ , hCC − hgo in the experiments
discussed further below.

We remark that given a specific selection of a differentiable
function ρ, one may potentially show that the controller (13)
certifies the safety of the set C defined in (11) by satisfying
(32) for a large enough hst and small enough κ.

C. Performance-based Nominal Controller

We consider the ‘wheels-to-distance’ energy efficiency as
the performance aspect of a truck [36], and we employ
a predictive cruise controller (PCC) [37]. PCC minimizes
the mechanical energy input by taking the constraints on
powertrain output and speed (7)-(8) into account and by taking
advantage of the variable road slope over a preview distance
s ∈ [0, sf ], where sf denotes the end of the horizon.

In PCC, we formulate an optimal control framework to find
the optimal drive and brake components u∗dr and u∗br in (3)
while minimizing the mechanical energy. The vehicle model
(2) is used as a constraint in the optimal control framework.
Since the road slope depends on the position, i.e., φ(s), the
implementation variables are converted from the time domain
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to spatial domain using dt
ds = 1

v while assuming positive speed:

0 < v ≤ v ≤ v, (18)

cf. (8). These lead to the model

dv

ds
=
udr + ubr

v
− f1(φ(s)) + f2(v)

v
. (19)

Similar to (7) we consider the following limitations on deci-
sion variables:

0 ≤ udr ≤ min

{
udr,

P

meffv

}
, (20)

−ubr ≤ ubr ≤ 0, (21)
udrubr = 0, (22)

where ubr and udr correspond to the maximum driving and
braking torques, and P denotes the maximum power of the
powertrain. The constraint (22) is introduced to ensure that
throttle and brake are not active simultaneously.

The cost function we wish to minimize is selected as the
mechanical energy input per unit effective mass:

w(t) =

∫ t

0

udr v dt̃, (23)

where the integrand refers to the power input per unit effective
mass. Note that we do not include the brake torque component
in (23) to prevent possible negative consumption when brakes
are active.

Converting the energy integral to the spatial domain (18)-
(23) result in the optimal control problem [37]:

(u∗dr, u
∗
br) = argmin

(udr,ubr)∈R2

∫ sf

0

udr ds̃, (24)

subject to
dv

ds
=
udr + ubr

v
− f1(φ(s)) + f2(v)

v
,

0 ≤ udr ≤ min

{
udr,

P

meffv

}
,

− ubr ≤ ubr ≤ 0,

udrubr = 0,

v ≤ v ≤ v,
v(0) = v0,

v(sf) = vf ,∫ sf

0

1

v(s)
ds ≤ tf ,

with boundary conditions v(0) = v0 and v(sf) = vf for speed.
The last constraint with maximum travel time tf is introduced
to ensure that the travel time is not sacrificed for better energy
efficiency. We typically obtain boundary conditions and the
maximum travel time from a benchmark run driven by an
expert human driver.

To solve the optimization problem (24), we rely on road
slope data obtained as follows. We use GPS measurements of
the benchmark run to calculate the discretized travel distance
values si along the road. The slope, φ(si) = sin−1

(
dE(si)

ds

)
,

is calculated from the elevation E(si) measured at correspond-
ing points si via numerical differentiation. Finally, the open-

source interior point solver IPOPT [38] is used to solve the
resulting nonlinear programming problem offline, yielding the
optimal inputs u∗dr(si) and u∗br(si) as well as the optimal speed
profile v∗PCC(si). Rather than directly implementing the opti-
mal inputs, we employ a feedback controller strategy to reject
potential disturbances emerging from the inaccuracies in the
low-level controller. Thus, a variable-speed cruise controller
with a constant gain αCC is implemented:

uPCC(s, v) = αCC

(
vPCC(s)− v

)
, (25)

where vPCC(s) is calculated from v∗PCC(si) via interpolation
for any given s ∈ [0, sf ].

Energy efficiency evaluation for different experimental runs
is carried out by calculating the cost function (23) along the
road. Since we do not implement u∗dr directly, we need to
calculate the udr values corresponding to the implemented
controller effort. We calculate udr using the vehicle dynamics
(2) and the measured speed, acceleration, and road slope data:

udr = max
{

0, v̇ + f1(φ(s)) + f2(v)
}
, (26)

where max{0, ·} is introduced to ensure udr ≥ 0.

D. Implemented Safe Controller Integration Scheme for CAT

Having introduced controller strategies (13) and (25) based
on different tasks, we now integrate them using the safety
filter concept (12). Utilizing the structure (13), we employ
two safety-oriented controllers distinguished by their feedback
source. We name the controller usafe(hr, v, vr

1), which relies on
the range sensor data, as the adaptive cruise controller (ACC)
and denote it by uACC. The controller usafe(hc, v, vc

1), which
employs the connectivity-based data, is called the connected
cruise controller (CCC) and is denoted by uCCC. The nominal
controller is selected as PCC (25), yielding:

u(s, hc, hr, v, vc
1, v

r
1) = min{uACC(hr, v, vr

1),

uCCC(hc, v, vc
1),

uPCC(s, v)},
(27)

see Fig. 2. In (27), PCC is utilized as long as it is considered
as safe, and switch to either of the safety-oriented controllers
occurs based on their feedback.

It is noted that the CV detected through connectivity may
or may not be the closest preceding vehicle in open traffic,
as shown in Fig. 1(b)-(c). If the CV is the closest preceding
vehicle, ACC and CCC respond to the same vehicle (with
slight differences based on sensor readings). When other non-
connected vehicles are between the CAT and CV, the range
sensor detects the closest preceding vehicle and ACC responds
accordingly, while CCC follows the CV. In this specific
scenario, CCC becomes redundant. Yet, we remark that the
beyond-line-of-sight detection capabilities of the connectivity
forebode significant improvement in both safety and energy
efficiency [10], [39], [40]. In this study, we focus on proving
the efficacy of the proposed safe controller integration method.
Thus we leave the work of utilizing more sophisticated
connectivity-based controller structures as future work.
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Fig. 5. The connected automated truck (CAT) used for experiments
and the information flow between its units.

IV. ON-TRACK EXPERIMENTS

In this section, we describe the experimental results obtained
on a closed track to validate the proposed controller structures.
In these experiments, the CAT was controlled to follow an
optimal-in-energy speed profile without a preceding vehicle, or
to follow a preceding CV according to the scenarios depicted
in Fig. 1(a) and (b). After describing the experimental setup
and procedure, the results for the nominal controller, the
safety-oriented controller, and the integrated controller with
the proposed safety filter scheme are introduced.

A. Details about Experimental Setup and Procedure

We used a 2011 International ProStar+ Class-8 truck de-
veloped by Navistar [26] as the CAT; see Fig. 5. The truck
has engine and brake actuation modules configured to follow
the desired pedal commands sent through the vehicle-CAN
bus following J1939 CAN protocol [41]. The vehicle states,
such as the wheel speed, gear position, engine torque and
rpm, and brake pressure are also available on the CAN bus
under the same protocol. The truck is equipped with a Mobile
Real-Time Targeting Machine developed by Speedgoat [42],
which reads the vehicle states from the vehicle-CAN bus, runs
the control algorithms in Simulink Real-Time, computes the
corresponding desired pedal commands, and sends them to the
vehicle-CAN bus. A personal computer was connected to the
real-time machine deploying algorithms in one direction and
monitoring data in another. The computer could also abort the
mission at any time, giving the control for pedals back to a
human driver. Steering was carried out by an expert human
driver all the time.

A radar was utilized as the range sensor. The radar sent
messages containing the headway and relative speed informa-
tion belonging to the closest preceding vehicle to the vehicle-
CAN bus. Both the truck and the CV were equipped with
a vehicle-to-everything (V2X) communication onboard unit
(OBU) developed by Commsignia [43]. These units provide
GPS coordinates and GPS-based speed measurements and
support peer-to-peer communication between vehicles. The

Fig. 6. (a) Test track used for experiments with landmarks indicating
details about the CV speed profile design. (b) Elevation profile E
with corresponding landmark positions. (c) Speed limit v, optimal-
in-energy speed profile vPCC, and measured speed profile v in the
PCC experiments. (d) Energy consumption curves w calculated from
experimental data using (23) for different controllers.

V2X OBU on the truck received data packets broadcasted
by the CV’s V2X OBU at a rate of 10 Hz, containing GPS
coordinates and speed information of the CV. The real-time
communication between the CAT’s V2X OBU and the Speed-
goat was established using user datagram protocol (UDP).

The on-track experiments were conducted at Navistar Prov-
ing Grounds, a test track closed to the public in New Carlisle,
Indiana, USA. The route used is shown in Fig. 6(a) with the
GPS trace of a benchmark run (red loop in the clockwise
direction). The start-end point of the experiments is marked

7



hst 5 m κ 0.6 1/s δ 20 m
α 0.4 1/s β 0.5 1/s αCC 0.9 1/s

udr 2 m/s2 ubr 4 m/s2 v 2.5 m/s

TABLE II. Controller parameters used for on-track experiments.

by a green triangle. Using GPS-based elevation measurements
from multiple benchmark runs, an average elevation profile of
the track was estimated as shown in Fig. 6(b). Blue triangles on
the map and the elevation plot indicate sharp turns; these were
considered when designing the speed limit v for that particular
part of the road, see the black dashed line in Fig. 6(c). We
also used a smaller speed limit in the middle section due to
poor road surface quality.

The loop of nearly 3000 meters of length was discretized
using the GPS trace of a benchmark run, resulting in GPS
data points approximately 2.5 meters away from each other.
The optimal control problem (24) was solved offline, and the
corresponding optimal-in-energy speed profile vPCC is plotted
in Fig. 6(c) as a gray dotted curve. The resulting energy
consumption per unit effective mass (23), i.e., the cost function
in (24), is depicted in Fig. 6(d) as a gray dotted curve. Notice
that the optimal profile requires very little energy after 1800
m and utilizes the gravitational potential energy to finish the
drive while obeying the speed limit. We used parameters given
in Table II for all the on-track experiments detailed in this
section.

B. Results

First, we implemented the PCC controller (25) on the CAT
without any preceding vehicle on the track. The results are
depicted in Fig. 6(c) as a green curve. One may observe
good speed-tracking performance in the cruise control, which
verifies the performance of the low-level controller. The cor-
responding energy consumption per unit mass calculated from
(23) is shown in Fig. 6(d) as a green curve. One may notice
the difference between the ideal energy consumption (gray
dotted curve) and the experimental one (green curve). This
gap is partly due to the powertrain dynamics omitted in the
optimal control problem (24), and partly due to the noise in
the experimental data, especially towards the end of the run.
This noise was due to poor GPS reception, caused by a dense
canopy, and it was amplified by the numerical differentiation
employed to obtain the acceleration in (26). When integrated
per (23), the noise results in a positive drift due to the
function max{0, ·}. Since we employ a comparative analysis
among different controller runs in this study, we ignore these
imperfections and focus on how well a controller performs in
terms of energy consumption compared to other controllers in
the experiments.

Next, we experimentally validated the safety-oriented con-
troller (13) such that the CAT traveled behind a CV. Since the
test track was closed to public traffic and no non-connected
vehicles were present, we only implemented CCC utilizing
connectivity-based data. This setup, which is equivalent to the
radar-based ACC in this scenario as depicted in Fig. 1(b),
allowed us to record the GPS trace and speed of the CV in a
particular run and later re-play this record for the CAT. These

Fig. 7. Experimental results from a CCC run. (a) Measured distance
headway h. (b) Speed limit v, CV speed profile v1, and measured
CAT speed profile v in the experiment.

experiments not only prevented a physical collision in the case
of a malfunction in hardware or software but also provided us
with consistent preceding vehicle motion across different runs
so that the repeatability could be evaluated solely on the merits
of controllers. In particular, we designed a speed profile v1 for
the preceding vehicle that imitates a heavy traffic scenario with
multiple slowdowns (marked by magenta triangles) and stops
(marked by red squares). Fig. 7(b) shows the resulting CV
speed profile as a cyan curve.

Experimental results for a CCC run are given in Fig. 7,
where panel (a) shows the measured distance headway and
panel (b) depicts the measured speed, both as red curves.
CCC keeps the system safe by maintaining a positive headway
throughout the run. Moreover, the truck successfully obeys the
speed limit even when the CV moves faster than the limit.
The energy consumption throughout the run is depicted in
Fig. 6(d) as a red curve, where the car-following is observed
to yield significantly more energy input rates than PCC around
700 meters and around 1800 meters due to the braking and
acceleration maneuvers triggered by the CV’s motion.

Finally, we implemented the safety filter (27) utilizing the
PCC and CCC as nominal and safety-oriented controllers
(without the radar-based ACC). Results are given in Fig. 8,
where panel (a) shows the measured distance headway and
panel (b) depicts the measured speed, both as blue curves.
Panel (c) displays controllers uPCC and uCCC as green and red
curves, respectively. Similar to the previously presented CCC
result, a positive headway was maintained throughout the run
thanks to the safety filter switching to CCC in critical moments
around 600 m, 1200 m, and 1650 m. In these moments, the
acceleration command of the CCC becomes smaller than that
of the PCC, responding to the other vehicle and ensuring
safety. At other times PCC was active since it suggested more
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Fig. 8. Experimental results while applying the proposed safe con-
troller integration scheme. (a) Measured distance headway h. (b) CV
speed profile v1, optimal-in-energy speed profile vPCC, and measured
CAT speed profile v in the experiment. (d) Controller outputs uPCC

and uCCC. The safety filter passed the minimum of these.

energy-efficient driving rather than following the preceding
vehicle.

We repeated these experiments 8-10 times for each con-
figuration with same conditions (same CV speed profile was
played back). Energy efficiency results are summarized in
Table III under the label ‘Recorded’ in terms of energy saving
values compared to the average of all CCC runs. In these runs
PCC achieved 23% energy saving on average compared to the
CCC, yet all of the PCC experiments were conducted on free
driving scenario without any preceding traffic. The integration
of the PCC and CCC through the safety filter yielded slightly
less energy saving (18% compared to the CCC on average), yet
the safety was established in all runs (headway never became
negative).

Next, to evaluate the robustness of the method to the
human-related variations, experiments were conducted with a
physical human-driven preceding vehicle reenacting the CV
speed profile v1 with close accuracy. Same as in the previous
experiments, the headway never reached zero in any of the
CCC and safety filter runs. Moreover, similar energy efficiency
results were obtained with a slight increase in the standard
deviations, see results given in Table III under the label ‘Live’.
This increase is due to the small variation between the speed

CV data Controller Energy saving
compared to CCC

Recorded PCC 23% ± 4%
Safety Filter 18% ± 3%

Live PCC 25% ± 4%
Safety Filter 18% ± 5%

TABLE III. Summary of energy efficiency in multiple experiments
conducted using a recorded CV speed profile (cyan curve in Fig. 7(b))
and a physical (live) CV reenacting the same profile.

profiles of the recorded CV and the human-driven CV. A video
illustratively summarizing on-track experiments is available
online [44].

C. Comparison to a Time Headway-based Switch

The efficacy of the safe controller integration scheme is
demonstrated via on-track experiments shown above. Here, we
compare the proposed scheme to a baseline integration method
(referred as the ‘naive switch’) that switches between the PCC
and CCC based on the time headway.

The switching scheme is summarized as

u(s, h, v, v1)=

{
uCCC(h, v, v1) if h ≤ τswv + hsw,

uPCC(s, v) if h > τswv + hsw,
(28)

where hsw is the zero-velocity distance offset and τsw > 0 is
the critical time headway at which we make the switch. We
fixed the parameter hsw = 10 m, and repeated the on-track
experiments with the same recorded preceding vehicle profile,
depicted in Fig. 7(b), using different critical time headway
values from the set τsw ∈ {2, 4, 6, 8} seconds. Experiments
were repeated 3 times for each parameter set. The average
and standard deviation of the final energy consumption values
are given in Fig. 9(a) along with other controller runs. Energy
consumption values for the naive switch runs span the gap
between the safety filter runs and the CCC runs, where smaller
τsw yields less consumption. This is expected because a
smaller τsw increases the time that PCC is active.

While the proposed integration scheme resulted in smooth
transitions between PCC and CCC (due to the Lipschitz
continuity guaranteed by control barrier function theory), the
naive switch typically led to abrupt jumps in the control input.
The average of the absolute values of all jumps in the control
input (i.e., |∆u(tk)| , |u(tk)− u(tk−1)| at switching times
tk) is shown in Fig. 9(b). While the seamless integration
via the safety filter led to |∆u| values close to zero, the
naive switch yielded large jumps and uncomfortable driving,
especially for smaller τsw. We note that the positively skewed
distribution of |∆u| leads to asymmetric deviations depicted
with asymmetric error bars in Fig. 9(b).

V. HIGHWAY EXPERIMENTS

Having proved the efficacy of the safety filter in a closed
test track, we proceed to validate the proposed structure on a
public highway.
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Fig. 9. (a) Average and standard deviation of the final energy
consumption w in all ‘recorded’ runs. The energy consumption values
decrease for the naive switch (28) as critical time headway τsw
decreases. (b) Average and standard deviation of the jumps |∆u| in
the controller command at the switches between PCC and CCC. The
naive switch is discontinuous, and decreasing τsw yields more abrupt
changes in the command. The proposed safety filter-based controller
integration scheme (27) is inherently continuous and provides smooth
driving.

A. Details about the Experimental Procedure

In these experiments, the CAT was driven on a public road
amongst non-connected human-driven vehicles (nCVs), and
one connected vehicle (CV) was driven by an expert driver
from our team. Thus, scenarios in both Fig. 1(b) and (c)
occurred. For the CAT, we used the same experimental setup
as described in the previous section; see Fig. 5. Note that in
these experiments, the CAT was able to utilize the information
from both the radar and connectivity.

A section on the Interstate 75 highway was selected for
highway experiments as shown in Fig. 10(a). We had previ-
ously collected elevation data on this road using four GPS
sensors attached to four vehicles. The averaged elevation
profile is shown in Fig. 10(b) with two significant hills en-
abling the optimal-in-energy controller framework to leverage
gravitational potential energy.

In highway experiments we employed a PCC box as a
part of our nominal controller. The PCC box hardware hosts
the commercialized version of the PCC algorithm described
in Section III-C and it is available for trucks manufactured
by Navistar [45]. While details about the algorithm running
under the PCC box are omitted here due to its confidential
nature, it utilizes the road slope information to calculate the
optimal-in-energy speed profile similar to the optimal control
framework (24), but in a rolling horizon fashion. We used the

hst 5 m αCC 0.7 1/s v 25 m/s
κ 0.8 1/s α 0.2 1/s v 32 m/s
δ 20 m β 0.5 1/s u 2 m/s2

u 3 m/s2

TABLE IV. Controller parameters used for the highway experiments.

Fig. 10. (a) Section of I-75 used for the highway experiments. (b)
Elevation profile E. (c) Speed limits v and v within which the PCC
box operates, optimal-in-energy speed profile vPCC, and measured
CAT speed profile v in the PCC experiments. (d) Energy consumption
curves w calculated from experimental data using (23) for different
controllers.

desired speed values calculated by the PCC box as vPCC in
our variable-speed cruise controller structure (25). The PCC
box enabled us to choose the speed limits v and v for our
system; please refer to Table IV for these and all the other
parameters used in highway experiments.

The resulting optimal-in-energy speed profile is shown in
Fig. 10(c) as a gray dotted curve. Similar to the on-track
experiments, one may notice the variation of the optimal speed
responding to the elevation changes along the road while
obeying the speed limits.

B. Results

First, we implemented the PCC (25) using the speed pro-
file vPCC attained from the PCC box. Results are depicted
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in Fig. 10(c) as a green curve. Observe the good speed-
tracking performance with a small steady-state error (up to 0.5
m/s). This error arose due to aerodynamics, which was more
prominent at higher speeds than the low-speed experiments
conducted when constructing the feedforward maps in the low-
level controller. The energy consumption profile corresponding
to the PCC run is displayed in Fig. 10(d) as a green curve.
Here, the favorable energy consumption can be observed even
at uphill regions thanks to the optimal speed profile taking the
elevation profile into account. Table V summarizes the final
energy consumption values in the highway experiments.

We remark that the environmental effects that lead to more
drastic speed changes (thus better chance for the PCC to gain
energy) were amplified in the closed track experiments through
lead vehicle’s speed profile design, see Fig. 6 and Fig. 7. In the
public road test, on the other hand, the limited environmental
effects (no traffic lights, conflicts by highway merging avoided
by changing lanes) yielded more smooth driving conditions.
Therefore, the positive impact of the PCC stayed on the lower
ends of the range of potential benefits in longer distances.

Next, we present the results of the highway experiment
when employing only safety-oriented controllers: the radar-
based ACC and connectivity-based CCC without the PCC
(from here on referred to as ACC/CCC). Note that in this
case we still apply the safety filter (27) to integrate ACC and
CCC in a seamless fashion; see Fig. 2. Similar to the on-track
experiments, we employed a single CV agent in the scenario of
Fig. 1(b) with a speed profile that includes uphill acceleration
actions at around 3 km and 14.5 km; see Fig. 11(b). Another
criterion in designing the CV speed profile was to have a
similar finish time as the PCC run to avoid penalizing time
for energy efficiency.

The distance headways and the speeds for the ACC/CCC
run are given in Fig. 11(a) and (b), respectively. Good car-
following performance can be observed in keeping the desired
distance headway specified by the inverse of the range policy
(14), i.e., V −1(v), depicted as orange dotted curve in panel
(a). The ACC/CCC controller maintains a close track of the
velocity of the preceding vehicle vc

1 (cyan curve in panel
(b)). In panel (a) the headway measured by the radar hr

(magenta) and calculated from connectivity hc (cyan) show
a small mismatch (up to 3.5 m). The safety filter (27) handles
these inconsistencies by passing the controller that demands
the most safety-critical acceleration. We note the jumps in the
measured data in two separate time instances, highlighted in
Fig. 11(b), were merely a malfunction in GPS sensing, and
they did not influence the experiments significantly. Enforcing
robustness against these types of impurities is a future research
direction.

Controller
Final energy
consumption

value

Energy saving
compared to
ACC/CCC

Finish
time

PCC 6396 J/kg 3.6 % 579 s
ACC/CCC 6635 J/kg - 577 s
Safety filter 6350 J/kg 4.3 % 583 s

TABLE V. Summary of highway experimental results.

Fig. 11. Highway experimental results for the ACC/CCC experiments.
(a) Connectivity-based distance headway hc and radar-based distance
headway hr. (b) Speed limit v, CV speed profile vc1 and CAT speed
profile v measured in the experiments.

The energy consumption profile calculated for the
ACC/CCC run given in Fig. 10(d) as a red curve, where the
effect of the uphill acceleration due to following the energy-
adverse CV speed profile is highlighted. The goal of finishing
the course in a similar time as the PCC run was achieved
as shown in Table V, and the truck’s similar initial and final
speeds for both experiments imply that an energy saving of
3.6% has been accomplished via using PCC over ACC/CCC.

Finally, we implemented the safety filter (27) with the PCC,
ACC, and CCC. The CV followed the same speed profile as
above (cyan curve in Fig. 11(b)). Results are presented in
Fig. 12, where panel (a) shows the elevation profile of the
road, while panel (b) depicts headway measured by the radar
hr (magenta) and calculated from connectivity hc (cyan) as
well as the target headway specified by the inverse of the
range policy (orange dotted). When the cyan and magenta
curves coincide, it indicates no vehicle between the truck
and the CV; cf. the scenario depicted in Fig. 1(b). When
engaged with a preceding vehicle, the safety filter successfully
keeps the distance headway around the target value. While the
radar sensing range restriction can be seen in this plot, the
communication between V2X units continued over a distance
of 300 m.

Fig. 12(c) shows the speed signals of interest: the CV
speed captured by connectivity vc

1 (cyan), the speed of the
closest preceding vehicle detected by radar vr

1 (magenta), the
optimal speed profile calculated by the PCC box vPCC (gray
dotted), and the measured speed v of the truck (blue). Panel
(d) presents the controller outputs uPCC (green), uCCC (red),
and uACC (magenta). Gaps in radar signals correspond to
no vehicle detection in front, and sudden jumps indicate cut-
ins from the other lanes. At some of these cut-ins, the lane-
changing vehicle traveled faster than the truck (e.g., between
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Fig. 12. Highway experimental results with the safety filter (27)
employed. (a) Elevation profile E. (b) Connectivity-based distance
headway hc and radar-based distance headway hr. (c) CV speed
based on GPS vc1, preceding vehicle speed detected by radar vr1,
optimal-in-energy speed profile vPCC and measured speed v of the
truck. (d) Controller outputs uPCC, uCCC and uACC. The safety filter
passed the minimum of these.

4-7 km and at 15.5 km), which was not considered safety-
critical by ACC, and therefore the safety filter kept using the
PCC. As a matter of fact, one may notice in panel (d) that PCC
was the active controller throughout the majority of the run,
resulting in a comparable energy consumption to the PCC run,
as shown by the blue dashed curve in Fig. 10(d). The energy
saving compared to the CCC run is 4.3% without significantly
increasing the course finish time, cf. Table V.

Switches to the safety-oriented controllers (i.e., to ACC or
CCC) occurred at three separate locations: at 2 km, 7.5 km,

and 13 km. While the first and the last engagements were
between the CAT and the CV, in case of the middle one the
truck responded to another non-connected vehicle traveling
in the traffic. In the first occurrence, highlighted as Sec. A
in Fig. 12, the PCC was initially the active controller. Then,
the CV reduced its speed allowing the truck to catch up and
engage. Consequently, the truck finished tracking the optimal
speed profile and started following the CV with CCC (as
the connectivity-based headway was reading a slightly smaller
value than the radar-based headway, i.e., hc < hr). Then, the
optimal speed profile gradually declined in the uphill section,
favoring the PCC over CCC in the safety filter. Thus the CAT
avoided uphill acceleration once the CV increased its speed. In
the second switch sequence, labeled as Sec. B, the ACC briefly
engaged with a non-connected vehicle traveling between the
CV and truck, see the scenario depicted in Fig. 1(c). With time,
the optimal speed became less than the preceding vehicle’s
speed, resulting in the PCC becoming the active controller
again. The last switching sequence at 13 km, highlighted
as Sec. C, occurred in a similar order as Sec. A. A video
highlighting the events in Sec. A is available online [44].

VI. CONCLUSION

In this paper, we proposed a safe integration scheme that
integrates a performance-based nominal controller with safety-
oriented controllers in a seamless manner for the longitudinal
control of connected automated trucks (CATs). We estab-
lished connections between the proposed integration scheme
and the framework of control barrier functions that provides
formal safety guarantees for controllers. The design steps
of a performance-based predictive cruise controller (PCC)
and a safety-oriented connected cruise controller (CCC) were
detailed as exemplary controllers. We validated the proposed
integration method in two experimental campaigns in low-
speed and high-speed settings. In these experiments, we
showed that the energy efficiency acquired through the PCC
can be integrated with the safety provided by the CCC, with
up to 18% and 4.3% savings in energy consumption for low-
speed and high-speed driving cycles, respectively. Importantly,
these experimental campaigns include a public highway, which
highlights the potential of the proposed scheme to be im-
plemented with commercial controllers of CATs in real-life
driving scenarios.

Future work includes integrating more sophisticated
performance-based controllers with a safety-critical controller.
The robustness of these controllers against impurities such as
GPS jumps will be investigated in detail.

APPENDIX A
CONTROL BARRIER FUNCTIONS AND SAFETY FILTER

Consider a nonlinear system of the form:

ẋ = f(x) + g(x)u, (29)

with state x ∈ Rn and input u ∈ Rm along with a set C ⊂ Rn
defined as the 0-superlevel set of a continuously differentiable
function b : Rn → R:

C , {x ∈ Rn | b(x) ≥ 0} . (30)
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System (29) is said to be safe with respect to the set C if the
following holds: x(t0) ∈ C =⇒ x(t) ∈ C for all t ≥ t0. We
name the set C as safe set.

Definition 1 (Control Barrier Function, [24]). The function
b is a Control Barrier Function (CBF) for (29) on C if there
exists α ∈ K such that for all x ∈ Rn:

sup
u∈Rm

[∇b(x) · (f(x) + g(x)u)]︸ ︷︷ ︸
ḃ(x,u)

> −α(b(x)). (31)

We note that a continuous function α is said to belong to
class K (α ∈ K) if α(0) = 0 and α is strictly monotonically
increasing. As stated by Corollary 2 in [24], a controller from
the set of controllers given as:

KCBF(x) ,
{
u ∈ Rm

∣∣∣ ḃ(x, u) ≥ −α(b(x))
}

(32)

renders the system (29) safe with respect to C.
Consider the quadratic program (QP):

u∗(x) = argmin
u∈Rm

1

2
‖u− unom(x)‖22

s.t. ḃ(x, u) ≥ −α(b(x)),

(33)

which yields the notion of safety filters. Here the controller
unom denotes a nominal controller that has been designed
to ensure performance without considering safety. The safety
filter outputs the nominal controller as long as it satisfies
the CBF condition, i.e., u∗(x) = unom(x) for all x such that
unom(x) ∈ KCBF(x) holds. Otherwise the output deviates as
minimally as possible from the nominal controller.

The solution of the QP can be obtained in a closed-form
[31]. For a single input system, u ∈ R, this solution reads:

u∗(x) =


max{unom(x), usafe(x)} if ∇b(x) · g(x) > 0,

min{unom(x), usafe(x)} if ∇b(x) · g(x) < 0,

unom(x) if ∇b(x) · g(x) = 0,
(34)

where
usafe(x) = −∇b(x) · f(x) + α(b(x))

∇b(x) · g(x)
. (35)

Considering model (6) and a CBF in the form (11), that cor-
responds to (30) with x = [h, v, v1]> and b(x) = h− ρ(v, v1),
and using Assumption 1, one may obtain

∇b(x) · g(x) < 0. (36)

That is, the safety filter (34) is applicable for the car-following
scenario yielding(12).
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